
Nonsteady measurement methods are used to study the thermodiffusional characteristics 
of substances, and so it is important to know the dynamics of the concentration difference 
at the ends of the separation system at short times [2]. Using the results of [i], we can 
show that 

Ac_ 4Co(1- Co) [ l / / -~  -- %0] 

as T § 0, from which it follows that the influence of sampling is negligibly small in the 
initial stage of the separation process. 

NOTATION 

c, concentration; t, time; z, coordinate; H, K, ~, transfer coefficients; L, column 
length; ~, mass of the substance per unit length; Co, initial concentration; Ce, ci, con- 
centrations at the positive and negative ends of the column; b = HL/2K. 
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ABSORPTION OF RADIATION IN A LAYER OF HIGHLY POROUS ~IATERIAL 

G. E. Gorelik, V. V. Levdanskii, 
V. G. Leitsina, and N. V. Pavlyukevich 

UDC 536.3 

Radiative transfer through a porous layer, modeled by a uniform system of opaque 
particles fixed in space, is investigated. 

Problems of the interaction of radiation with porous solids are important for many 
fields of modern thermophysics. Depending on the geometry and physical properties of the 
frame, as well as on the relation between the wavelength of the radiation and the parameters 
of the porous structure, it is possible to use various models of porous bodies and various 
approaches to describing the process of propagation and absorption of the radiation. For 
example, the case of the passage of radiation through a porous body modeled by a system of 
parallel cylindrical capillaries was considered in [I]. Highly porous bodies with a frame 
of globular structure are used very often in practice, however. A model of randomly 
arranged spheres is more adequate in such cases. 

As is noted in [2], three models of radiative transfer in loose layers are usually used. 
The first model is based on the approximation of a heterogeneous mixture of randomly packed 
solid particles and pores by a certain regular geometrical arrangement of the solid phase 
and the voids. In the second model, proposed by Rosseland, it is assumed that when the 
mean free path of a photon in a loose layer is much less than the geometrical size of the 
absorbing medium, the path of an individual quantum of radiant energy can be taken as random, 
and the process is diffusional. In the third type of model, the loose layer is treated 
as a pseudohomogeneous medium, in which radiative heat exchange is described through dif- 
ferential or integrodifferential equations and the corresponding boundary conditions. 

The transmission of radiation in layers with both open and dense packing of particles 
is analyzed in [3, 4]. Here to determine the transmission coefficient in the case of open 
packing a two-flux approximation is used, while a layer with dense particle packing is 
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TABLE i. Fraction of Radiation Absorbed in the Layer, Deter- 
mined by the Monte Carlo Method (Kd, K i) and from the Analytic 
Solution (~), as a Function of the Thickness of the Layer for 

jo >> 1 and ~ = 0.9. 

8=0,2  e=0 ,8  

L/r  
Ud x i  ~ wE • r:E 
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0,34 
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0,55 
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0,47 
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0,57 
0,57 

0,62 
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O, 82 
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0,63 0,67 
0,78 0,80 
0,83 0,83 
0,85 0,84 
0,86 0,84 

0,91 
0,92 
0,92 
0,92 
0,92 

TABLE 2. Fraction of Radiation Absorbed in the Layer as a 
Function of Its Thickness for jo = i, H = 0.9, and B = -0.5. 

e=0,2 

8~0,8 

L/r  ~O 20 30 50 ~00 
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0,215 
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0,213 

0,146 
0,260 

0,110 
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O, 086 
0,181 

likened to a stack of plane-parallel plates. The transmissivity and reflectivity of a layer 
of transparent spherical particles are determined in [5] on the basis of a numerical solution 
of the integrodifferential equation of madiative transfer, under the assumption that the 
radiation intensity field depends essentially on both the polar and the azimuthal angular 
coordinates. The influence of the profile of particle concentration on the flux distribution 
of the transmitted and reflected radiation over the thickness of the layer is estimated, in 
particular. The authors of [6], devoted to an investigation of combined heat transfer by 
heat conduction and radiation in a highly porous solid, in comparing theoretical and experi- 
mental results on radiative transfer, concluded that the asymmetry factor has an insigni- 
ficant role in the scattering indicatrix. In a calculation of radiative heat exchange in a 
layer of randomly packed spheres in [2], a two-flux model is used in which the effective 
coefficients of absorption and backscattering are determined using the Monte Carlo method. 

The purpose of the present work is to analyze the passage of radiation through a layer 
of a highly porous solid, modeled by a uniform system of randomly distributed, opaque 
spherical particles of equal radius, determine the fraction of radiation absorbed, and find 
an expression for the internal heat source in the porous solid. The assumption of isotropy 
of the scattering used in the model is verified through calculations by the Monte Carlo 
method. 

If the radiation wavelength is much less than the diameter of the spheres and the 
distance between them, then wave effects are negligibly small and the process can be treated 
as the passage of a "photon gas" through a layer of opaque particles. Let the radiation of 
a diffuse source With a flux density jo fall on a plane layer of thickness L and porosity 
~, i.e| a flux ~jo penetrates into the layer. For the solution of the problem, we use a 
method of description analogous to that used in an investigation of free-molecule gas flow 
in a porous solid in the presence of a heterogeneous chemical reaction [7], which enables 
us to allow for the geometry of the system, the properties of the particle surface, and 
the multiplicity of the scattering. 

With allowance for the thermal self-emission of the surfaces of the spheres, we write 
the following integral equation for the radiant energy emerging from a unit volume of the 
porous solid per unit time: 

(X) = s S g T  ~ (X) + (1 - -  e) N (X),  ( 1 )  
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where S is the surface area of the spheres per unit volume \(S- l--n4 4~r2_ 3(I--H) I: 
~ r  3 r ] 

3 
N(X) is the radiation incident per unit volume of the solid, consisting of the sum of the 
fluxes coming from the external source, the lower boundary of the layer, and the rest of the 
volume. In the approximation of isotropic scattering, N(X) has the form 

N (X) = 2nloE~ --i-- + 2] ,E~  . . . .  

z (2) 
1 

Here E n is an exponential integral function defined by the expressions [8] 

I 

En (y) = .! n - 2  exp {--y/B} dl z, 
0 

E~+, (y) = - -  ,[ E~ (y) dy. (3) 

The flux density of the radiation from the lower boundary of the layer is found from the 
relation 

], = II~T~ + (I - -  g) Ni, 

where NI is the density of the flux incident on this surface, equal to 

(4) 

L (+) , ! (5) 

The presence of the factor R in the first term of (4) is due to the fact that it describes 
the radiation of the part of the surface of the bottom free of spheres, while the radiation 
of the particles is already taken into account by the function ~(X) at X = L. 

We assume that the photon mean free path, in accordance with [9], is defined by the 
expression 

4II 

3(1 - - I I )  (6) 

We use an approximation often applied for the solution of problems of radiative transfer 
[8], which is based on replacing the integral En(Y) by the exponential b exp {-cy}. For 
this we first approximate the function El inside the integral in (2), 

E~(y) = 2exp{--iy}, (7) 

while we use (7) and the recurrent relation (3) to determine the functions E2 and E3. 

The further procedure for solving Eq. (i) is analogous to that used in [i] to investigate 
the absorption of radiant energy in an individual cylindrical channel. We substitute (2), 

X T 
(4), and (5) into (i), converting to the dimensionless quantities x-- , T=--, ~= 

~ i  and T-- ] for this and approximating the functions E n by the above- 
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indicated means. At the same time, we assume that the temperature in the layer can be re- 
presented in the form 

7 ~ = Toexp {~x}. 

As a r e s u l t ,  we o b t a i n  t h e  i n t e g r a l  e q u a t i o n  

(8) 

1 

~ ( x )  = (I - -  s) j '  ~(~)  exp ( - - 2 ] x  - -  ~ 1} d~ + 2 (1 - -  ~)l~o exp {--2x} + 4 e f t  4 exp {46x} + 2 (I - -  ~) exp {--2  (l - -  x)} X 
0 (9) 

M [ ~  (1---  e) .f  ~ (~)exp  {--2  ( l - -~)}  d~ @ (1 --e) /~0 exp {--2t} + elTg exp {4~I} , 
L z  O 

w h e r e  1 = L/X .  

I t  i s  s e e n  t h a t  t h e  s o l u t i o n  o f  Eq.  (9)  i s  d e t e r m i n e d  by  t h r e e  d i m e n s i o n l e s s  p a r a m e t e r s ,  
~, g,  and l ,  i . e . ,  t h e  p o r o s i t y  ~ and t h e  r a d i u s  r do n o t  e n t e r  i n t o  t h e  s o l u t i o n  d i r e c t l y ,  
b u t  a f f e c t  t h e  v a l u e  o f  1 owing t o  t h e  d e p e n d e n c e  o f  X on  ~ and r .  

Differentiating (9) twice and combining the result with the original equation, we 
arrive at the differential equation 

d2q) - -  4e~- = 16el7~ (4~ ~ - -  1) exp {4~x}, 

the solution of which has the form 

q) (x) -- ai exp {2 -I/~-x} + as exp {- -2  ] / T x } +  
(10) 

+ 4~I'F 4 (4~ ~ - -  I) exp {4~x}. 
4 f i  ~ - -  

Thus ,  t h e  a p p r o x i m a t i o n  o f  t h e  f u n c t i o n s  E n by  e x p o n e n t i a l s  and t h e  u s e  o f  a t e m p e r a t u r e  
d i s t r i b u t i o n  i n  t h e  fo rm  (8)  e n a b l e d  u s  t o  o b t a i n  an  a p p r o x i m a t e  a n a l y t i c  s o l u t i o n  o f  Eq.  
(i)o 

Substituting (i0) into (9) and equating the coefficients of exp {-2x} and exp {2x}, we 
obtain a system of linear algebraic equations for determining ax and a2 (in the case of c 
1): 

al a2 4eIT~ (2~I-- I) + 4lT0 ' 
1 + 1117 + 1 - -  1/-------~ - -  4~  ~ - -  

1 
[(1 - -  1/7)(exp {--2/} - -  exp {2 1/7l}) ! 1 - -  1117 exp {2 1/~-1}1 a, + 

+ [ 1 ] 
(1 + 1/7)(exp {--2l} - -  exp { - -2  1 /71})+ 1--+ 1/----~" exp {--2  11171} a2 = 

4d'~ 4 
= 4elT~exp{481 } + 4(1 - - e ) l e x p  {--2l} ~ ~ 482 _-------~ • 

• [(1 - -  ~)(2~ - -  1)(exp {48l } - -  exp { - -20 )  + (2~ + 1) exp {4801. 

The resultant quantities characterizing the absorption of radiant energy in the layer 
are of interest. The power density of the absorbed radiation can be represented in the form 

~(x) ---- e IN (x) - -  41T04 exp {4~x}] , (ii) 
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or since in accordance with (i) 

~(x)  = (1 -- 8)N (x) + 48IT~ exp {46x}, 

for s # i we have from (ii) and (12) 

(12) 

~(x) = 1 --8 8 ~ ( x ) - -  1---848/T4 exp {4~x} = 1 ~ 8  (a, exp{2]/-~x}_ka~exp{_2.1/-~x})q168621~4exp{46x} " e - 4 ~  2 (13) 

For = 1 we obtain the relations for ~ and ~ from (9) and (ii), respectively: 

(x) = 4IT~ exp {46x}, 

( T~ /exp{--2x} + 46lT~ e x p { 2 [ x +  l ( 2 6 -  1)l}-- 
~ ( x ) = 2 1 ~  26q-1  ] 2 6 - - 1  (14) 

166~1T~ exp {46x }. 
462--1 

E q u a t i o n s  (13) and (14) ,  w r i t t e n  f o r  the  d i m e n s i o n a l  ~ ( x ) ,  can  be used  to  d e t e r m i n e  ~he 
internal heat source in a porous solid. 

The radiation absorbed in the layer lying between the surface x = 0 and a certain section 
x is found as follows: 

x 

1 !' ~(g) dg. F (x) = - 7 -  

The flux density of the radiation absorbed by the lower boundary is determined from the 
expression 

~ = 8 (N-~-- 74 exp {46I}). 

It must be kept in mind that the radiation of an external isotropic source not only 
penetrates into the layer but is also absorbed at its outer surface. Thus, the total 
fraction of the radiation absorbed is 

n~, i (L) +- qh • 2 1 5  . - - -  + (1 - - I I ) 8 =  + ( 1 - - I I )  8, 
Io io 

where 

• = HZ(l)/jo = I (L)/jo. 

While  the  r e p l a c e m e n t  of  t h e  k e r n e l  o f  t he  i n t e g r a l  e q u a t i o n  by an e x p o n e n t i a l  has  been  
approved  on a number of  o t h e r  p rob lems  of  r a d i a t i v e  t r a n s f e r  [10 ] ,  i t  i s  d e s i r a b l e  to  t e s t  
t he  a s s u m p t i o n  t h a t  t he  s c a t t e r i n g  i s  i s o t r o p i c  by d i r e c t  n u m e r i c a l  m o d e l i n g .  For t h i s  
p u r p o s e ,  we s o l v e  t h e  p rob lem under  c o n s i d e r a t i o n  by t h e  Monte Car lo  method .  For t h i s  t he  
f l u x  of  i n c i d e n t  r a d i a t i o n  i s  d i v i d e d  i n t o  a c e r t a i n  number of  b u n d l e s  of  e n e r g y ,  t h e  pa th  
of each of which is traced with allowance for the collision cross section and the laws of 
scattering and absorption on the model spheres. 

For the diffuse flux the polar (8) and azimuthal (@) angles are chosen from the rela- 
tions [ii] 

0 = arcsin-[/Ro, ~ = 2aR, .  

Then the  run  of  a b u n d l e  i s  p l a y e d  o u t  u n t i l  a c o l l i s i o n  w i t h  a model  s p h e r e ,  

(15) 

~s = --~.ln(1 - -  R J .  
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Here R~, Re, and R% are random numbers distributed uniformly over the segment from zero to 
one, w~ile ~ is determined from (6). 

Then absorption or reflection is played out on the basis of the given emissivity E of 
the surface of a sphere. In the case of absorption, the history of the given test bundle 
ends and the analysis of the next one begins. For diffuse reflection, the position of the r 
normal to the surface of the sphere at the point of collision is played out from the con- 
dition of a uniform distribution of the centers of the model particles over the surface of 
the front hemisphere of radius r, and then the new direction of the bundle is played out 
from the relations (15). The case of isotropic scattering, when 0 = arccos (i -- 2R0) and 

= 2~R~, is also considered for comparison. Then the process of passage of the bundle 
through the porous layer is played out again until it is absorbed or leaves the layer. 

The program enables one to record the bundles absorbed and reflected by the layer. 
The number of test bundles is i0,000, providing an accuracy on the order of 0.01. 

Let us turn to a discussion of the conclusions from the s_olution of the problem. First 
of all, we note that they depend essentially on the value of jo. For jo >> i, nonisothermi- 
city hardly affects the distribution ~(x), i.e., in this case one can, as in [i], obtain an 
analytic expression, independent of the temperature distribution, for the internal heat 
source and use it to solve_the problem of heat exchange in a model porous solid. Here the 
character of the function ~d(X) is determined by the relative thickness ~ of the layer and 
the emissivity e. For thin layers (l ~ i) thecharacteristicregion of variation of ~(x) 
extends to the entire layer, while for thick ones (~ ~i0), ~(x) declines rather rapidly 
with an increase in x; this decline lessens with a decrease in E. 

In Table 1 we present values of the fraction K of the radiation absorbed in the layer 
as a function of the ratio L/r for B = 0 and ~ = 0.9 (for such a porosity, % = 12r, i.e., 
I = 0.0833L/r). With an increase in the thickness of the layer, ~ first increases and then, 
starting with a certain value of L/r, it becomes constant. It is seen that for all L/r 
quantities K, Kd, and mi agree sufficiently well. Such are the results of a comparison of 
the valuesof the power density ~(x) of the absorbed radiation and the flux density ~ of the 
radiation absorbed at the lower boundary of the layer, found from the analytic solution and 
by =he method of direct numerical modeling. 

Thus, the assumption that the scattering of radiation on the model spheres is isotropic 
is fully justified when finding the distribution of the absorbed energy. A difference in 
the results for the isothermal and nonisothermal cases is characteristic for low and zero 
values of the flux density of the external radiation. For ~o = i, for example, thermal 
equilibrium in the layer is observed in the isothermal case (K = 0), while the fraction of 
absorbed radiation depends on the emissivity and the thickness of the layer in the noniso- 
thermal case (see Table II, where values of K and mZ obtained from the approximate analytic 
solution of the problem are presented). 

NOTATION 

o, Stefan--Boltzmann constant; r, radius of a particle; I, photon mean free path; e, 
emissivity of the particle surface and the lower boundary; T,, characteristic temperature; 
To and TI, temperatures of the upper and lower boundaries of the layer; K, fraction of the 
radiation absorbed in the layer. Indices: d and i, diffuse and isotropic scattering of 
radiation by the particles. 
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PHASE TRANSITIONS IN ELEMENTS AND COMPOUNDS. PART 3 

I. P. Zhuk UDC 539.184:536.421 

There is shown to be good agreement for certain systems between the optical and 
thermodynamic parameters characterizing collective phenomena: laser emission and 
phase transition. 

Thermodynamics arose from practical heat engineering (macroscopic thermophysics) and 
has since been extended to all known physical, chemical, and biological phenomena and has 
thus had a substantial effect on many disciplines. The role of thermodynamics in science 
is evident from the general use of concepts such as temperature, energy, and entropy. As 
thermodynamics is a phenomenological discipline, itinfluences thermophysics at the macro- 
scopic level. Although advances in thermodynamics were stimulated originally by heat 
engineering, the subject has had a large effect not so much on the latter but on disciplines 
concerned with phenomena at the microscopic level. Statistical mechanics enables one to 
relate phenomena observed at the microscopic level to general measured macroscopic parameters. 

A major task in thermophysics, the theory of elasticity, hydrodynamics, and so on is 
to establish relationships between the macroscopic parameters (observed ones) and the 
microscopic ones. Difficulties arise here both because of the complexity of the pheno- 
mena (these being determined by several forms of interaction) and also in difficulties in 
obtaining information on the elementary steps giving rise to the observed macroscopic para- 
meters. Phenomena determined by single forms of interaction have usually been thoroughly 
researched, and such simple phenomena include laser emission. In research on complicated 
processes such as for example phase transitions, it is desirable to establish the roles of 
simpler phenomena. 

In that respect, considerable interest attaches to processes responsible for phase 
transitions, which may be compared with the collective phenomena determining lasing. It has 
been shown [i, 2] that quantities such as the latent heats of phase transitions and the 
positions of peaks in absorption spectra are related to phase-transition temperatures under 
normal conditions via Wien's displacement law. 
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